Generalidades em equações paramétricas
Podemos ter casos complexos em que o parâmetro se transforme numa equação quadrática como por exemplo: 3 x2 +(k+2) x + k-1 = 0
a)Determine o valor de k de modo que o produto das raízes seja igual a 2/3;
b)Determine o valor de k de modo que a soma das raízes seja igual a 5
c)Determine o valor de k de modo que a equação admita duas raízes distintas.
d)Determine o valor de k de modo que a equação admita duas raízes iguais.
e)Determine o valor de k de modo que a equação não admita raízes reais.
Resolução
3 x2 +(k+2) x + k-1 = 0
a = 3, b = k+2, c = k-1
Como queremos determine o valor de k de modo que o produto das raízes seja igual a 2/3 então P = 2/3
Lembrando que 😛 = -C/a
Para que o produto das raízes da equação 3 x2 +(k+2) x + k-1 = 0 seja igual 2/3 o valor de k deve ser igual a 3.
b)
Resolução
3 x2 +(k+2) x + k-1 = 0
a = 3, b = k+2, c = k-1
Como queremos determine o valor de k de modo que a soma das raízes seja igual a -5/3 entao S = -5/3
Lembrando que : S = -b/a
Para que a soma das raízes da equação 3 x2 +(k+2) x + k-1 = 0 seja igual -5/3 o valor de k deve ser igual a 3.
c)
Resolução
3 x2 +(k+2) x + k-1 = 0
a = 3, b = k+2, c = k-1
Como queremos determine o valor de k de modo quea equação admita duas raízes distintas então Δ > 0
Δ> 0
b2 – 4*a*c > 0
(k+2)2 -4*3*(K-1) > 0
K2+4k+4 -12*(k-1) > 0
K2+4k+4-12k+12>0
K2-8k+16 > 0
a =1, b = -8, c = 16
Uma vez que toda a parábola esta acima da recta ou seja todo gráfico é positivo e nós queremos onde K2-8k+16> 0 ou seja onde é positiva e notamos que o nosso gráfico toda ela é positiva então a solução é k ]- ∞;4[U]4;+∞[. Portantopara que a equação 3x2 +(k+2)x + k-1 = 0 admita duas raízes distintas o valor de k deve pertencer ]- ∞; 4 [ U ] 4 ; + ∞ [.
Ou seja para todos valores de R a equação admitira raízes reais distintas.
d)
Resolução
3 x2 +(k+2) x + k-1 = 0
a = 3, b = k+2, c = k-1
Como queremos determine o valor de k de modo quea equação admita raízes duplas então Δ = 0
b2 – 4*a*c = 0
(k+2)2 -4*3*(K-1) = 0
K2+4k+4 -12*(k-1) = 0
K2 + 4k + 4 – 12k + 12 = 0
K2 – 8k + 16 = 0
a =1, b = -8, c = 16
Uma vez que queremos onde K2-8k+16 = 0 ou seja os valores de K que vão anular esta equação ou ainda as raízes da equação e verificamos que isso acontece somente em k = 4. Portanto para que a equação 3x2 +(k+2)x + k-1 = 0 admita duas raízes iguais o valor de k deve ser igual a 4.
e)
Resolução
3 x2 +(k+2) x + k-1 = 0
a = 3, b = k+2, c = k-1
Como queremos determine o valor de k de modo quea equação não admita raízes reais então Δ <0
b2 – 4*a*c<0
(k+2)2 -4*3*(K-1) < 0
K2+4k+4 -12*(k-1) < 0
K2 + 4k + 4 – 12k + 12 <0
K2– 8k + 16 < 0
a =1, b = -8, c = 16
Uma vez que toda a parábola esta acima da recta ou seja todo gráfico é positivo e nós queremos onde K2-8k+16< 0 ou seja onde é negativa e notamos que o nosso gráfico toda ela é positiva e em nenhum momento é negativa então a solução é k pertence ao conjunto vazio .
Portanto a equação 3x2 +(k+2)x + k-1 = 0 não admita raízes não reais. Ou seja para todos valores de R a equação admitira raízes reais.
Conteúdo relacionado:
- Equações quadráticas
- Funções quadráticas
- Inequações quadráticas
- Equações Lineares ou equação do 1º grau
Resultados dos exames Academia Militar
Pautas das Provas de Aptidão Física da Academia Militar já estão disponíveis As pautas das provas de…
Baixar edital de admissão a PRM 2026
Tornou-se público que nos termos do artigo 34 da Lei no 04/2022, de 11 de Fevereiro, está aberto o c…
Edital PRM 2026 – Curso Básico da Polícia
Edital PRM 2026: Inscrições, Requisitos e Datas para o Curso Básico da Polícia O Ministério do Inter…
📝 Exames de Acesso UAN 2025/2026: Inscrições, Vagas, Datas e Documentos Necessários
🔍 Tudo o que precisas de saber para te candidatares à Universidade Agostinho Neto este ano! A Reitor…
Equações lineares, Inequações lineares e funções lineares
O que são equações lineares Equações lineares são equações do tipo ax+b=0 com a≠0 Com…
Exames de Admissão UP em PDF – Baixe Exames por Disciplina
Se estás a preparar-te para os exames de admissão da Universidade Pedagógica (UP), estás no lugar ce…