Generalidades em equações paramétricas
Podemos ter casos complexos em que o parâmetro se transforme numa equação quadrática como por exemplo: 3 x2 +(k+2) x + k-1 = 0
a)Determine o valor de k de modo que o produto das raízes seja igual a 2/3;
b)Determine o valor de k de modo que a soma das raízes seja igual a 5
c)Determine o valor de k de modo que a equação admita duas raízes distintas.
d)Determine o valor de k de modo que a equação admita duas raízes iguais.
e)Determine o valor de k de modo que a equação não admita raízes reais.
Resolução
3 x2 +(k+2) x + k-1 = 0
a = 3, b = k+2, c = k-1
Como queremos determine o valor de k de modo que o produto das raízes seja igual a 2/3 então P = 2/3
Lembrando que 😛 = -C/a
Para que o produto das raízes da equação 3 x2 +(k+2) x + k-1 = 0 seja igual 2/3 o valor de k deve ser igual a 3.
b)
Resolução
3 x2 +(k+2) x + k-1 = 0
a = 3, b = k+2, c = k-1
Como queremos determine o valor de k de modo que a soma das raízes seja igual a -5/3 entao S = -5/3
Lembrando que : S = -b/a
Para que a soma das raízes da equação 3 x2 +(k+2) x + k-1 = 0 seja igual -5/3 o valor de k deve ser igual a 3.
c)
Resolução
3 x2 +(k+2) x + k-1 = 0
a = 3, b = k+2, c = k-1
Como queremos determine o valor de k de modo quea equação admita duas raízes distintas então Δ > 0
Δ> 0
b2 – 4*a*c > 0
(k+2)2 -4*3*(K-1) > 0
K2+4k+4 -12*(k-1) > 0
K2+4k+4-12k+12>0
K2-8k+16 > 0
a =1, b = -8, c = 16
Uma vez que toda a parábola esta acima da recta ou seja todo gráfico é positivo e nós queremos onde K2-8k+16> 0 ou seja onde é positiva e notamos que o nosso gráfico toda ela é positiva então a solução é k ]- ∞;4[U]4;+∞[. Portantopara que a equação 3x2 +(k+2)x + k-1 = 0 admita duas raízes distintas o valor de k deve pertencer ]- ∞; 4 [ U ] 4 ; + ∞ [.
Ou seja para todos valores de R a equação admitira raízes reais distintas.
d)
Resolução
3 x2 +(k+2) x + k-1 = 0
a = 3, b = k+2, c = k-1
Como queremos determine o valor de k de modo quea equação admita raízes duplas então Δ = 0
b2 – 4*a*c = 0
(k+2)2 -4*3*(K-1) = 0
K2+4k+4 -12*(k-1) = 0
K2 + 4k + 4 – 12k + 12 = 0
K2 – 8k + 16 = 0
a =1, b = -8, c = 16
Uma vez que queremos onde K2-8k+16 = 0 ou seja os valores de K que vão anular esta equação ou ainda as raízes da equação e verificamos que isso acontece somente em k = 4. Portanto para que a equação 3x2 +(k+2)x + k-1 = 0 admita duas raízes iguais o valor de k deve ser igual a 4.
e)
Resolução
3 x2 +(k+2) x + k-1 = 0
a = 3, b = k+2, c = k-1
Como queremos determine o valor de k de modo quea equação não admita raízes reais então Δ <0
b2 – 4*a*c<0
(k+2)2 -4*3*(K-1) < 0
K2+4k+4 -12*(k-1) < 0
K2 + 4k + 4 – 12k + 12 <0
K2– 8k + 16 < 0
a =1, b = -8, c = 16
Uma vez que toda a parábola esta acima da recta ou seja todo gráfico é positivo e nós queremos onde K2-8k+16< 0 ou seja onde é negativa e notamos que o nosso gráfico toda ela é positiva e em nenhum momento é negativa então a solução é k pertence ao conjunto vazio .
Portanto a equação 3x2 +(k+2)x + k-1 = 0 não admita raízes não reais. Ou seja para todos valores de R a equação admitira raízes reais.
Conteúdo relacionado:
- Equações quadráticas
- Funções quadráticas
- Inequações quadráticas
- Equações Lineares ou equação do 1º grau
Como consultar sala de realização de exames de UP 2025
Como consultar sala de realização de exames da Universidade Pedagógica 2025 As Salas de realização d…
Calendário de exames de admissão UP 2025
Data de realização dos exames de admissão ao Universidade Pedagógica (UP) para o ano lectivo de 2025…
Calendário de exames de admissão UEM 2025
Data de realização dos exames de admissão a Universidade Eduardo Mondlane (UEM) para o ano lectivo d…
Resultados UJC 2025
Resultados dos exames de admissão a universidade Joaquim Chissano 2025 Resultados dos exames de admi…
Listas de Júris de Candidatos aos exames de admissão ao ETP 2025
As listas de Júris de candidatos aos exames de admissão aos Ensino Técnico Profissional (ETP) para o…
Edital ISPG 2025
Edital de exames de admissão ao Instituto superior politécnico de gaza para ano lectivo de 2025 Perí…